Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 162-167, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38650142

RESUMO

Prostate cancer, prevalent among males, is influenced by various molecular factors, including Growth Differentiation Factor 15 (GDF15). Despite its recognized role in multiple tumor types, GDF15's specific involvement in prostate cancer remains insufficiently explored. This study investigates the regulatory function of GDF15 in prostate cancer. To explore GDF15's impact, we established GDF15 knockdown and overexpression models in prostate cancer cells. We quantified mRNA and protein levels using RT-PCR and Western blotting. Functional assays, including CCK8, Transwell, wound healing, and flow cytometry, were employed to evaluate cell proliferation, invasion, migration, and apoptosis. Additionally, the effect of GDF15 on tumor growth was assessed using a metastatic tumor model in nude mice. Elevated GDF15 expression was identified in prostate cancer tissues and cells. The knockdown of GDF15 led to the activation of the MAPK/ERK signaling pathway. C16PAF was found to counteract the inhibitory effects of sh-GDF15 on cell proliferation, invasion, migration, and apoptosis in LNCaP cells. It also reversed the sh-GDF15-induced alterations in the epithelial-mesenchymal transition (EMT) process. In vivo, C16PAF notably mitigated the sh-GDF15-induced suppression of tumor growth. The study demonstrated that sh-GDF15 inhibits cell proliferation, invasion, migration, EMT process, and tumor growth, while it promotes apoptosis. However, these effects were significantly reversed by C16PAF. The study underscores the potential of GDF15 as a target for novel therapeutic interventions in prostate cancer treatment and prevention. These findings illuminate GDF15's multifaceted role in prostate cancer pathogenesis and suggest its viability as a therapeutic target.


Assuntos
Apoptose , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal , Técnicas de Silenciamento de Genes , Fator 15 de Diferenciação de Crescimento , Sistema de Sinalização das MAP Quinases , Camundongos Nus , Neoplasias da Próstata , Fator 15 de Diferenciação de Crescimento/genética , Fator 15 de Diferenciação de Crescimento/metabolismo , Masculino , Neoplasias da Próstata/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Humanos , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Sistema de Sinalização das MAP Quinases/genética , Apoptose/genética , Transição Epitelial-Mesenquimal/genética , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Camundongos , Camundongos Endogâmicos BALB C
2.
Int J Urol ; 20(10): 1017-22, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23379983

RESUMO

OBJECTIVES: To measure interleukin-6 levels in a protamine sulfate-induced chronic cystitis rat model treated with hyaluronic acid, and to study the correlation among interleukin-6, bladder inflammatory degree and voiding frequency. METHODS: A chronic cystitis model was created in female rats by using long-term intermittent intravesical protamine sulfate (0.5 mL, 30 mg/mL). Then, hyaluronic acid (0.5 mL, 0.8 mg/mL) was also instilled intravesically in the rats. Interleukin-6 levels were analyzed with immunohistochemistry, real-time reverse transcription polymerase chain reaction and enzyme-linked immunosorbent assay. Hematoxylin-eosin staining was carried out to examine bladder inflammatory degree based on a four-point scoring system (from 0 - none to 3 - severe). Voiding patterns were investigated by cystometrography. RESULTS: According to cystometrography, protamine sulfate-induced rats had significantly shorter intercontraction intervals and less bladder capacity (P < 0.001). The bladder tissue of the rats showed severe chronic inflammation. Immunohistochemistry, reverse transcription polymerase chain reaction and enzyme-linked immunosorbent assay showed significantly higher expression of interleukin-6 (P < 0.001). After intravesical administration of hyaluronic acid, both intercontraction intervals and bladder capacity increased significantly (P < 0.001), whereas both bladder inflammatory degree and interleukin-6 levels decreased significantly (P < 0.001). Furthermore, there was a strong correlation between interleukin-6 levels and inflammatory degree (r = 0.727, P < 0.001), and also between interleukin-6 levels and voiding frequency (r = -0.761, P < 0.001). CONCLUSIONS: Intravesical administration of hyaluronic acid decreases interleukin-6 levels, as well as the severity of bladder inflammation and voiding frequency in a rat model of chronic cystitis. Interleukin-6 levels closely correlate with the inflammatory degree and voiding frequency. Thus, they can be regarded as an assessment measure of therapeutic impact.


Assuntos
Cistite Intersticial , Ácido Hialurônico/farmacologia , Interleucina-6/imunologia , Protaminas/farmacologia , Adjuvantes Imunológicos/farmacologia , Administração Intravesical , Animais , Cistite Intersticial/induzido quimicamente , Cistite Intersticial/tratamento farmacológico , Cistite Intersticial/imunologia , Modelos Animais de Doenças , Monitoramento de Medicamentos/métodos , Feminino , Antagonistas de Heparina/farmacologia , Interleucina-6/metabolismo , Ratos , Ratos Sprague-Dawley , Índice de Gravidade de Doença , Bexiga Urinária/efeitos dos fármacos , Bexiga Urinária/imunologia , Micção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA